C$^{\ast }$-simplicity has no local obstruction
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In 2016, I solved a problem of de la Harpe from 2006: Is there a nondiscrete C$^{\ast }$-simple group? However the solution was not fully satisfactory, as the C$^{\ast }$-simple groups provided (and their operator algebras) are very close to discrete groups. All previously known examples are of this form. In this article I give yet another construction of nondiscrete C$^{\ast }$-simple groups. The statement in the title then follows. This in particular gives the first examples of nonelementary C$^{\ast }$-simple groups (in Wesolek’s sense).
@article{10_1017_fms_2022_5,
     author = {Yuhei Suzuki},
     title = {C$^{\ast }$-simplicity has no local obstruction},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.5/}
}
TY  - JOUR
AU  - Yuhei Suzuki
TI  - C$^{\ast }$-simplicity has no local obstruction
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.5/
DO  - 10.1017/fms.2022.5
LA  - en
ID  - 10_1017_fms_2022_5
ER  - 
%0 Journal Article
%A Yuhei Suzuki
%T C$^{\ast }$-simplicity has no local obstruction
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.5/
%R 10.1017/fms.2022.5
%G en
%F 10_1017_fms_2022_5
Yuhei Suzuki. C$^{\ast }$-simplicity has no local obstruction. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.5

Cité par Sources :