The Abelian/Nonabelian Correspondence and Gromov–Witten Invariants of Blow-Ups
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove the abelian/nonabelian correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine–Kim–Sabbah, Brown, and Oh. From this, we deduce how genus-zero Gromov–Witten invariants change when a smooth projective variety X is blown up in a complete intersection defined by convex line bundles. In the case where the blow-up is Fano, our result gives closed-form expressions for certain genus-zero invariants of the blow-up in terms of invariants of X. We also give a reformulation of the abelian/nonabelian Correspondence in terms of Givental’s formalism, which may be of independent interest.
@article{10_1017_fms_2022_46,
author = {Tom Coates and Wendelin Lutz and Qaasim Shafi},
title = {The {Abelian/Nonabelian} {Correspondence} and {Gromov{\textendash}Witten} {Invariants} of {Blow-Ups}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.46},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.46/}
}
TY - JOUR AU - Tom Coates AU - Wendelin Lutz AU - Qaasim Shafi TI - The Abelian/Nonabelian Correspondence and Gromov–Witten Invariants of Blow-Ups JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.46/ DO - 10.1017/fms.2022.46 LA - en ID - 10_1017_fms_2022_46 ER -
%0 Journal Article %A Tom Coates %A Wendelin Lutz %A Qaasim Shafi %T The Abelian/Nonabelian Correspondence and Gromov–Witten Invariants of Blow-Ups %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.46/ %R 10.1017/fms.2022.46 %G en %F 10_1017_fms_2022_46
Tom Coates; Wendelin Lutz; Qaasim Shafi. The Abelian/Nonabelian Correspondence and Gromov–Witten Invariants of Blow-Ups. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.46
Cité par Sources :