Distributions on partitions arising from Hilbert schemes and hook lengths
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions when sorted by these invariants in congruence classes. We consider the prominent situations that arise from extensions of the Nekrasov–Okounkov hook product formula and from Betti numbers of various Hilbert schemes of n points on ${\mathbb {C}}^2$. For the Hilbert schemes, we prove that homology is equidistributed as $n\to \infty $. For t-hooks, we prove distributions that are often not equidistributed. The cases where $t\in \{2, 3\}$ stand out, as there are congruence classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest. We determine the asymptotics, near roots of unity, of the ubiquitous infinite products
| $ \begin{align*}F_1(\xi; q):=\prod_{n=1}^{\infty}\left(1-\xi q^n\right), \ \ \ F_2(\xi; q):=\prod_{n=1}^{\infty}\left(1-(\xi q)^n\right) \ \ \ {\mathrm{and}}\ \ \ F_3(\xi; q):=\prod_{n=1}^{\infty}\left(1-\xi^{-1}(\xi q)^n\right). \end{align*} $ |
@article{10_1017_fms_2022_45,
author = {Kathrin Bringmann and William Craig and Joshua Males and Ken Ono},
title = {Distributions on partitions arising from {Hilbert} schemes and hook lengths},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.45},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.45/}
}
TY - JOUR AU - Kathrin Bringmann AU - William Craig AU - Joshua Males AU - Ken Ono TI - Distributions on partitions arising from Hilbert schemes and hook lengths JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.45/ DO - 10.1017/fms.2022.45 LA - en ID - 10_1017_fms_2022_45 ER -
%0 Journal Article %A Kathrin Bringmann %A William Craig %A Joshua Males %A Ken Ono %T Distributions on partitions arising from Hilbert schemes and hook lengths %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.45/ %R 10.1017/fms.2022.45 %G en %F 10_1017_fms_2022_45
Kathrin Bringmann; William Craig; Joshua Males; Ken Ono. Distributions on partitions arising from Hilbert schemes and hook lengths. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.45
Cité par Sources :