Quaternionic hyperbolic lattices of minimal covolume
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

For any $n>1$ we determine the uniform and nonuniform lattices of the smallest covolume in the Lie group $\operatorname {\mathrm {Sp}}(n,1)$. We explicitly describe them in terms of the ring of Hurwitz integers in the nonuniform case with n even, respectively, of the icosian ring in the uniform case for all $n>1$.
@article{10_1017_fms_2022_43,
     author = {Vincent Emery and Inkang Kim},
     title = {Quaternionic hyperbolic lattices of minimal covolume},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.43/}
}
TY  - JOUR
AU  - Vincent Emery
AU  - Inkang Kim
TI  - Quaternionic hyperbolic lattices of minimal covolume
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.43/
DO  - 10.1017/fms.2022.43
LA  - en
ID  - 10_1017_fms_2022_43
ER  - 
%0 Journal Article
%A Vincent Emery
%A Inkang Kim
%T Quaternionic hyperbolic lattices of minimal covolume
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.43/
%R 10.1017/fms.2022.43
%G en
%F 10_1017_fms_2022_43
Vincent Emery; Inkang Kim. Quaternionic hyperbolic lattices of minimal covolume. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.43

Cité par Sources :