Quaternionic hyperbolic lattices of minimal covolume
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
For any $n>1$ we determine the uniform and nonuniform lattices of the smallest covolume in the Lie group $\operatorname {\mathrm {Sp}}(n,1)$. We explicitly describe them in terms of the ring of Hurwitz integers in the nonuniform case with n even, respectively, of the icosian ring in the uniform case for all $n>1$.
@article{10_1017_fms_2022_43,
author = {Vincent Emery and Inkang Kim},
title = {Quaternionic hyperbolic lattices of minimal covolume},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.43},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.43/}
}
Vincent Emery; Inkang Kim. Quaternionic hyperbolic lattices of minimal covolume. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.43
Cité par Sources :