Mirror symmetry and automorphisms
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that there is an extra grading in the mirror duality discovered in the early nineties by Greene–Plesser and Berglund–Hübsch. Their duality matches cohomology classes of two Calabi–Yau orbifolds. When both orbifolds are equipped with an automorphism s of the same order, our mirror duality involves the weight of the action of $s^*$ on cohomology. In particular it matches the respective s-fixed loci, which are not Calabi–Yau in general. When applied to K3 surfaces with nonsymplectic automorphism s of odd prime order, this provides a proof that Berglund–Hübsch mirror symmetry implies K3 lattice mirror symmetry replacing earlier case-by-case treatments.
@article{10_1017_fms_2022_41,
     author = {Alessandro Chiodo and Elana Kalashnikov},
     title = {Mirror symmetry and automorphisms},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.41/}
}
TY  - JOUR
AU  - Alessandro Chiodo
AU  - Elana Kalashnikov
TI  - Mirror symmetry and automorphisms
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.41/
DO  - 10.1017/fms.2022.41
LA  - en
ID  - 10_1017_fms_2022_41
ER  - 
%0 Journal Article
%A Alessandro Chiodo
%A Elana Kalashnikov
%T Mirror symmetry and automorphisms
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.41/
%R 10.1017/fms.2022.41
%G en
%F 10_1017_fms_2022_41
Alessandro Chiodo; Elana Kalashnikov. Mirror symmetry and automorphisms. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.41

Cité par Sources :