The second moment of $\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg L-functions
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove an asymptotic expansion of the second moment of the central values of the $\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg L-functions $L(1/2,\pi \otimes \pi _0)$ for a fixed cuspidal automorphic representation $\pi _0$ over the family of $\pi $ with analytic conductors bounded by a quantity that is tending to infinity. Our proof uses the integral representations of the L-functions, period with regularised Eisenstein series and the invariance properties of the analytic newvectors.
@article{10_1017_fms_2022_39,
     author = {Subhajit Jana},
     title = {The second moment of $\mathrm {GL}(n)\times \mathrm {GL}(n)$ {Rankin{\textendash}Selberg} {L-functions}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.39},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.39/}
}
TY  - JOUR
AU  - Subhajit Jana
TI  - The second moment of $\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg L-functions
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.39/
DO  - 10.1017/fms.2022.39
LA  - en
ID  - 10_1017_fms_2022_39
ER  - 
%0 Journal Article
%A Subhajit Jana
%T The second moment of $\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg L-functions
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.39/
%R 10.1017/fms.2022.39
%G en
%F 10_1017_fms_2022_39
Subhajit Jana. The second moment of $\mathrm {GL}(n)\times \mathrm {GL}(n)$ Rankin–Selberg L-functions. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.39

Cité par Sources :