Shokurov’s conjecture on conic bundles with canonical singularities
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
A conic bundle is a contraction $X\to Z$ between normal varieties of relative dimension $1$ such that $-K_X$ is relatively ample. We prove a conjecture of Shokurov that predicts that if $X\to Z$ is a conic bundle such that X has canonical singularities and Z is $\mathbb {Q}$-Gorenstein, then Z is always $\frac {1}{2}$-lc, and the multiplicities of the fibres over codimension $1$ points are bounded from above by $2$. Both values $\frac {1}{2}$ and $2$ are sharp. This is achieved by solving a more general conjecture of Shokurov on singularities of bases of lc-trivial fibrations of relative dimension $1$ with canonical singularities.
@article{10_1017_fms_2022_32,
author = {Jingjun Han and Chen Jiang and Yujie Luo},
title = {Shokurov{\textquoteright}s conjecture on conic bundles with canonical singularities},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.32},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.32/}
}
TY - JOUR AU - Jingjun Han AU - Chen Jiang AU - Yujie Luo TI - Shokurov’s conjecture on conic bundles with canonical singularities JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.32/ DO - 10.1017/fms.2022.32 LA - en ID - 10_1017_fms_2022_32 ER -
Jingjun Han; Chen Jiang; Yujie Luo. Shokurov’s conjecture on conic bundles with canonical singularities. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.32
Cité par Sources :