Parametrised moduli spaces of surfaces as infinite loop spaces
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the $E_2$-algebra $\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$ consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion $\Omega B\Lambda \mathfrak {M}_{*,1}$: it is the product of $\Omega ^{\infty }\mathbf {MTSO}(2)$ with a certain free $\Omega ^{\infty }$-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups $\Gamma _{g,n}$ with $g\geqslant 0$ and $n\geqslant 1$.
@article{10_1017_fms_2022_29,
     author = {Andrea Bianchi and Florian Kranhold and Jens Reinhold},
     title = {Parametrised moduli spaces of surfaces as infinite loop spaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.29/}
}
TY  - JOUR
AU  - Andrea Bianchi
AU  - Florian Kranhold
AU  - Jens Reinhold
TI  - Parametrised moduli spaces of surfaces as infinite loop spaces
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.29/
DO  - 10.1017/fms.2022.29
LA  - en
ID  - 10_1017_fms_2022_29
ER  - 
%0 Journal Article
%A Andrea Bianchi
%A Florian Kranhold
%A Jens Reinhold
%T Parametrised moduli spaces of surfaces as infinite loop spaces
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.29/
%R 10.1017/fms.2022.29
%G en
%F 10_1017_fms_2022_29
Andrea Bianchi; Florian Kranhold; Jens Reinhold. Parametrised moduli spaces of surfaces as infinite loop spaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.29

Cité par Sources :