Parametrised moduli spaces of surfaces as infinite loop spaces
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We study the $E_2$-algebra $\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$ consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion $\Omega B\Lambda \mathfrak {M}_{*,1}$: it is the product of $\Omega ^{\infty }\mathbf {MTSO}(2)$ with a certain free $\Omega ^{\infty }$-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups $\Gamma _{g,n}$ with $g\geqslant 0$ and $n\geqslant 1$.
@article{10_1017_fms_2022_29,
author = {Andrea Bianchi and Florian Kranhold and Jens Reinhold},
title = {Parametrised moduli spaces of surfaces as infinite loop spaces},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.29/}
}
TY - JOUR AU - Andrea Bianchi AU - Florian Kranhold AU - Jens Reinhold TI - Parametrised moduli spaces of surfaces as infinite loop spaces JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.29/ DO - 10.1017/fms.2022.29 LA - en ID - 10_1017_fms_2022_29 ER -
%0 Journal Article %A Andrea Bianchi %A Florian Kranhold %A Jens Reinhold %T Parametrised moduli spaces of surfaces as infinite loop spaces %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.29/ %R 10.1017/fms.2022.29 %G en %F 10_1017_fms_2022_29
Andrea Bianchi; Florian Kranhold; Jens Reinhold. Parametrised moduli spaces of surfaces as infinite loop spaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.29
Cité par Sources :