Level correspondence of the K-theoretic I-function in Grassmann duality
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we prove a series of identities of the quasi-map K-theoretical I-functions with level structure between the Grassmannian and its dual Grassmannian. Those identities prove the quantum K-theory version mutation conjecture stated in [13]. Here we find an interval of levels within which two I-functions are the same, and on the boundary of that interval, two I-functions intertwine. We call this phenomenon the level correspondence in Grassmann duality.
@article{10_1017_fms_2022_28,
     author = {Hai Dong and Yaoxiong Wen},
     title = {Level correspondence of the {K-theoretic} {I-function} in {Grassmann} duality},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.28},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.28/}
}
TY  - JOUR
AU  - Hai Dong
AU  - Yaoxiong Wen
TI  - Level correspondence of the K-theoretic I-function in Grassmann duality
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.28/
DO  - 10.1017/fms.2022.28
LA  - en
ID  - 10_1017_fms_2022_28
ER  - 
%0 Journal Article
%A Hai Dong
%A Yaoxiong Wen
%T Level correspondence of the K-theoretic I-function in Grassmann duality
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.28/
%R 10.1017/fms.2022.28
%G en
%F 10_1017_fms_2022_28
Hai Dong; Yaoxiong Wen. Level correspondence of the K-theoretic I-function in Grassmann duality. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.28

Cité par Sources :