Where are the zeroes of a random p-adic polynomial?
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the distribution of the roots of a random p-adic polynomial in an algebraic closure of ${\mathbb Q}_p$. We prove that the mean number of roots generating a fixed finite extension K of ${\mathbb Q}_p$ depends mostly on the discriminant of K, an extension containing fewer roots when it becomes more ramified. We prove further that for any positive integer r, a random p-adic polynomial of sufficiently large degree has about r roots on average in extensions of degree at most r.Beyond the mean, we also study higher moments and correlations between the number of roots in two given subsets of ${\mathbb Q}_p$ (or, more generally, of a finite extension of ${\mathbb Q}_p$). In this perspective, we notably establish results highlighting that the roots tend to repel each other and quantify this phenomenon.
@article{10_1017_fms_2022_27,
     author = {Xavier Caruso},
     title = {Where are the zeroes of a random p-adic polynomial?},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.27/}
}
TY  - JOUR
AU  - Xavier Caruso
TI  - Where are the zeroes of a random p-adic polynomial?
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.27/
DO  - 10.1017/fms.2022.27
LA  - en
ID  - 10_1017_fms_2022_27
ER  - 
%0 Journal Article
%A Xavier Caruso
%T Where are the zeroes of a random p-adic polynomial?
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.27/
%R 10.1017/fms.2022.27
%G en
%F 10_1017_fms_2022_27
Xavier Caruso. Where are the zeroes of a random p-adic polynomial?. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.27

Cité par Sources :