The space $\mathbf {L_1(L_p)}$ is primary for 1 p ∞
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
The classical Banach space $L_1(L_p)$ consists of measurable scalar functions f on the unit square for which
We show that $L_1(L_p) (1 p \infty )$ is primary, meaning that whenever $L_1(L_p) = E\oplus F$, where E and F are closed subspaces of $L_1(L_p)$, then either E or F is isomorphic to $L_1(L_p)$. More generally, we show that $L_1(X)$ is primary for a large class of rearrangement-invariant Banach function spaces.
| $ \begin{align*}\|f\| = \int_0^1\Big(\int_0^1 |f(x,y)|^p dy\Big)^{1/p}dx \infty.\end{align*} $ |
@article{10_1017_fms_2022_25,
author = {Richard Lechner and Pavlos Motakis and Paul F.X. M\"uller and Thomas Schlumprecht},
title = {The space $\mathbf {L_1(L_p)}$ is primary for 1 < p < \ensuremath{\infty}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.25},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.25/}
}
TY - JOUR
AU - Richard Lechner
AU - Pavlos Motakis
AU - Paul F.X. Müller
AU - Thomas Schlumprecht
TI - The space $\mathbf {L_1(L_p)}$ is primary for 1 < p < ∞
JO - Forum of Mathematics, Sigma
PY - 2022
VL - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.25/
DO - 10.1017/fms.2022.25
LA - en
ID - 10_1017_fms_2022_25
ER -
%0 Journal Article
%A Richard Lechner
%A Pavlos Motakis
%A Paul F.X. Müller
%A Thomas Schlumprecht
%T The space $\mathbf {L_1(L_p)}$ is primary for 1 < p < ∞
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.25/
%R 10.1017/fms.2022.25
%G en
%F 10_1017_fms_2022_25
Richard Lechner; Pavlos Motakis; Paul F.X. Müller; Thomas Schlumprecht. The space $\mathbf {L_1(L_p)}$ is primary for 1 < p < ∞. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.25
Cité par Sources :