Curves of maximal moduli on K3 surfaces
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that if X is a complex projective K3 surface and $g>0$, then there exist infinitely many families of curves of geometric genus g on X with maximal, i.e., g-dimensional, variation in moduli. In particular, every K3 surface contains a curve of geometric genus 1 which moves in a nonisotrivial family. This implies a conjecture of Huybrechts on constant cycle curves and gives an algebro-geometric proof of a theorem of Kobayashi that a K3 surface has no global symmetric differential forms.
@article{10_1017_fms_2022_24,
     author = {Xi Chen and Frank Gounelas},
     title = {Curves of maximal moduli on {K3} surfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.24/}
}
TY  - JOUR
AU  - Xi Chen
AU  - Frank Gounelas
TI  - Curves of maximal moduli on K3 surfaces
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.24/
DO  - 10.1017/fms.2022.24
LA  - en
ID  - 10_1017_fms_2022_24
ER  - 
%0 Journal Article
%A Xi Chen
%A Frank Gounelas
%T Curves of maximal moduli on K3 surfaces
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.24/
%R 10.1017/fms.2022.24
%G en
%F 10_1017_fms_2022_24
Xi Chen; Frank Gounelas. Curves of maximal moduli on K3 surfaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.24

Cité par Sources :