Invariant Ideal Axiom
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce and prove the consistency of a new set theoretic axiom we call the Invariant Ideal Axiom. The axiom enables us to provide (consistently) a full topological classification of countable sequential groups, as well as fully characterize the behavior of their finite products.We also construct examples that demonstrate the optimality of the conditions in IIA and list a number of open questions.
@article{10_1017_fms_2022_23,
     author = {Michael Hru\v{s}\'ak and Alexander Shibakov},
     title = {Invariant {Ideal} {Axiom}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.23/}
}
TY  - JOUR
AU  - Michael Hrušák
AU  - Alexander Shibakov
TI  - Invariant Ideal Axiom
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.23/
DO  - 10.1017/fms.2022.23
LA  - en
ID  - 10_1017_fms_2022_23
ER  - 
%0 Journal Article
%A Michael Hrušák
%A Alexander Shibakov
%T Invariant Ideal Axiom
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.23/
%R 10.1017/fms.2022.23
%G en
%F 10_1017_fms_2022_23
Michael Hrušák; Alexander Shibakov. Invariant Ideal Axiom. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.23

Cité par Sources :