Chow rings of stacks of prestable curves I
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the Chow ring of the moduli stack $\mathfrak {M}_{g,n}$ of prestable curves and define the notion of tautological classes on this stack. We extend formulas for intersection products and functoriality of tautological classes under natural morphisms from the case of the tautological ring of the moduli space $\overline {\mathcal {M}}_{g,n}$ of stable curves. This paper provides foundations for the paper [BS21].In the appendix (jointly with J. Skowera), we develop the theory of a proper, but not necessary projective, pushforward of algebraic cycles. The proper pushforward is necessary for the construction of the tautological rings of $\mathfrak {M}_{g,n}$ and is important in its own right. We also develop operational Chow groups for algebraic stacks.
@article{10_1017_fms_2022_21,
     author = {Younghan Bae and Johannes Schmitt and Jonathan Skowera},
     title = {Chow rings of stacks of prestable curves {I}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.21/}
}
TY  - JOUR
AU  - Younghan Bae
AU  - Johannes Schmitt
AU  - Jonathan Skowera
TI  - Chow rings of stacks of prestable curves I
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.21/
DO  - 10.1017/fms.2022.21
LA  - en
ID  - 10_1017_fms_2022_21
ER  - 
%0 Journal Article
%A Younghan Bae
%A Johannes Schmitt
%A Jonathan Skowera
%T Chow rings of stacks of prestable curves I
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.21/
%R 10.1017/fms.2022.21
%G en
%F 10_1017_fms_2022_21
Younghan Bae; Johannes Schmitt; Jonathan Skowera. Chow rings of stacks of prestable curves I. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.21

Cité par Sources :