Categorical traces and a relative Lefschetz–Verdier formula
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a relative Lefschetz–Verdier theorem for locally acyclic objects over a Noetherian base scheme. This is done by studying duals and traces in the symmetric monoidal $2$-category of cohomological correspondences. We show that local acyclicity is equivalent to dualisability and deduce that duality preserves local acyclicity. As another application of the category of cohomological correspondences, we show that the nearby cycle functor over a Henselian valuation ring preserves duals, generalising a theorem of Gabber.
@article{10_1017_fms_2022_2,
     author = {Qing Lu and Weizhe Zheng},
     title = {Categorical traces and a relative {Lefschetz{\textendash}Verdier} formula},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.2/}
}
TY  - JOUR
AU  - Qing Lu
AU  - Weizhe Zheng
TI  - Categorical traces and a relative Lefschetz–Verdier formula
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.2/
DO  - 10.1017/fms.2022.2
LA  - en
ID  - 10_1017_fms_2022_2
ER  - 
%0 Journal Article
%A Qing Lu
%A Weizhe Zheng
%T Categorical traces and a relative Lefschetz–Verdier formula
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.2/
%R 10.1017/fms.2022.2
%G en
%F 10_1017_fms_2022_2
Qing Lu; Weizhe Zheng. Categorical traces and a relative Lefschetz–Verdier formula. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.2

Cité par Sources :