Vector bundles and finite covers
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Motivated by the problem of finding algebraic constructions of finite coverings in commutative algebra, the Steinitz realization problem in number theory and the study of Hurwitz spaces in algebraic geometry, we investigate the vector bundles underlying the structure sheaf of a finite flat branched covering. We prove that, up to a twist, every vector bundle on a smooth projective curve arises from the direct image of the structure sheaf of a smooth, connected branched cover.
@article{10_1017_fms_2022_19,
     author = {Anand Deopurkar and Anand Patel},
     title = {Vector bundles and finite covers},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.19/}
}
TY  - JOUR
AU  - Anand Deopurkar
AU  - Anand Patel
TI  - Vector bundles and finite covers
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.19/
DO  - 10.1017/fms.2022.19
LA  - en
ID  - 10_1017_fms_2022_19
ER  - 
%0 Journal Article
%A Anand Deopurkar
%A Anand Patel
%T Vector bundles and finite covers
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.19/
%R 10.1017/fms.2022.19
%G en
%F 10_1017_fms_2022_19
Anand Deopurkar; Anand Patel. Vector bundles and finite covers. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.19

Cité par Sources :