Polish spaces of Banach spaces
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We present and thoroughly study natural Polish spaces of separable Banach spaces. These spaces are defined as spaces of norms, respectively pseudonorms, on the countable infinite-dimensional rational vector space. We provide an exhaustive comparison of these spaces with admissible topologies recently introduced by Godefroy and Saint-Raymond and show that Borel complexities differ little with respect to these two topological approaches.We investigate generic properties in these spaces and compare them with those in admissible topologies, confirming the suspicion of Godefroy and Saint-Raymond that they depend on the choice of the admissible topology.
@article{10_1017_fms_2022_16,
author = {Marek C\'uth and Martin Dole\v{z}al and Michal Doucha and Ond\v{r}ej Kurka},
title = {Polish spaces of {Banach} spaces},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.16},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.16/}
}
TY - JOUR AU - Marek Cúth AU - Martin Doležal AU - Michal Doucha AU - Ondřej Kurka TI - Polish spaces of Banach spaces JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.16/ DO - 10.1017/fms.2022.16 LA - en ID - 10_1017_fms_2022_16 ER -
Marek Cúth; Martin Doležal; Michal Doucha; Ondřej Kurka. Polish spaces of Banach spaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.16
Cité par Sources :