Amenability, proximality and higher-order syndeticity
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that the universal minimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation-invariant Boolean algebras of subsets of the group satisfying a higher-order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.
@article{10_1017_fms_2022_11,
     author = {Matthew Kennedy and Sven Raum and Guy Salomon},
     title = {Amenability, proximality and higher-order syndeticity},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.11/}
}
TY  - JOUR
AU  - Matthew Kennedy
AU  - Sven Raum
AU  - Guy Salomon
TI  - Amenability, proximality and higher-order syndeticity
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.11/
DO  - 10.1017/fms.2022.11
LA  - en
ID  - 10_1017_fms_2022_11
ER  - 
%0 Journal Article
%A Matthew Kennedy
%A Sven Raum
%A Guy Salomon
%T Amenability, proximality and higher-order syndeticity
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.11/
%R 10.1017/fms.2022.11
%G en
%F 10_1017_fms_2022_11
Matthew Kennedy; Sven Raum; Guy Salomon. Amenability, proximality and higher-order syndeticity. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.11

Cité par Sources :