Amenability, proximality and higher-order syndeticity
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We show that the universal minimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation-invariant Boolean algebras of subsets of the group satisfying a higher-order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.
@article{10_1017_fms_2022_11,
author = {Matthew Kennedy and Sven Raum and Guy Salomon},
title = {Amenability, proximality and higher-order syndeticity},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.11/}
}
TY - JOUR AU - Matthew Kennedy AU - Sven Raum AU - Guy Salomon TI - Amenability, proximality and higher-order syndeticity JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.11/ DO - 10.1017/fms.2022.11 LA - en ID - 10_1017_fms_2022_11 ER -
Matthew Kennedy; Sven Raum; Guy Salomon. Amenability, proximality and higher-order syndeticity. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.11
Cité par Sources :