Branch points for (almost-)minimizers of two-phase free boundary problems
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the existence and structure of branch points in two-phase free boundary problems. More precisely, we construct a family of minimizers to an Alt–Caffarelli–Friedman-type functional whose free boundaries contain branch points in the strict interior of the domain. We also give an example showing that branch points in the free boundary of almost-minimizers of the same functional can have very little structure. This last example stands in contrast with recent results of De Philippis, Spolaor and Velichkov on the structure of branch points in the free boundary of stationary solutions.
@article{10_1017_fms_2022_105,
     author = {Guy David and Max Engelstein and Mariana Smit Vega Garcia and Tatiana Toro},
     title = {Branch points for (almost-)minimizers of two-phase free boundary problems},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2022.105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.105/}
}
TY  - JOUR
AU  - Guy David
AU  - Max Engelstein
AU  - Mariana Smit Vega Garcia
AU  - Tatiana Toro
TI  - Branch points for (almost-)minimizers of two-phase free boundary problems
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.105/
DO  - 10.1017/fms.2022.105
LA  - en
ID  - 10_1017_fms_2022_105
ER  - 
%0 Journal Article
%A Guy David
%A Max Engelstein
%A Mariana Smit Vega Garcia
%A Tatiana Toro
%T Branch points for (almost-)minimizers of two-phase free boundary problems
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.105/
%R 10.1017/fms.2022.105
%G en
%F 10_1017_fms_2022_105
Guy David; Max Engelstein; Mariana Smit Vega Garcia; Tatiana Toro. Branch points for (almost-)minimizers of two-phase free boundary problems. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2022.105

Cité par Sources :