The complete separation of the two finer asymptotic $\boldsymbol {\ell _{p}}$ structures for $ \boldsymbol {1\le p}$$ \boldsymbol {\infty }$
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

For $1\le p \infty $, we present a reflexive Banach space $\mathfrak {X}^{(p)}_{\text {awi}}$, with an unconditional basis, that admits $\ell _p$ as a unique asymptotic model and does not contain any Asymptotic $\ell _p$ subspaces. Freeman et al., Trans. AMS. 370 (2018), 6933–6953 have shown that whenever a Banach space not containing $\ell _1$, in particular a reflexive Banach space, admits $c_0$ as a unique asymptotic model, then it is Asymptotic $c_0$. These results provide a complete answer to a problem posed by Halbeisen and Odell [Isr. J. Math. 139 (2004), 253–291] and also complete a line of inquiry of the relation between specific asymptotic structures in Banach spaces, initiated in a previous paper by the first and fourth authors. For the definition of $\mathfrak {X}^{(p)}_{\text {awi}}$, we use saturation with asymptotically weakly incomparable constraints, a new method for defining a norm that remains small on a well-founded tree of vectors which penetrates any infinite dimensional closed subspace.
@article{10_1017_fms_2022_101,
     author = {Spiros A. Argyros and Alexandros Georgiou and Antonis Manoussakis and Pavlos Motakis},
     title = {The complete separation of the two finer asymptotic $\boldsymbol {\ell _{p}}$ structures for $ \boldsymbol {1\le p}$<$ \boldsymbol {\infty }$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.101/}
}
TY  - JOUR
AU  - Spiros A. Argyros
AU  - Alexandros Georgiou
AU  - Antonis Manoussakis
AU  - Pavlos Motakis
TI  - The complete separation of the two finer asymptotic $\boldsymbol {\ell _{p}}$ structures for $ \boldsymbol {1\le p}$<$ \boldsymbol {\infty }$
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.101/
DO  - 10.1017/fms.2022.101
LA  - en
ID  - 10_1017_fms_2022_101
ER  - 
%0 Journal Article
%A Spiros A. Argyros
%A Alexandros Georgiou
%A Antonis Manoussakis
%A Pavlos Motakis
%T The complete separation of the two finer asymptotic $\boldsymbol {\ell _{p}}$ structures for $ \boldsymbol {1\le p}$<$ \boldsymbol {\infty }$
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.101/
%R 10.1017/fms.2022.101
%G en
%F 10_1017_fms_2022_101
Spiros A. Argyros; Alexandros Georgiou; Antonis Manoussakis; Pavlos Motakis. The complete separation of the two finer asymptotic $\boldsymbol {\ell _{p}}$ structures for $ \boldsymbol {1\le p}$<$ \boldsymbol {\infty }$. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.101

Cité par Sources :