A generalized Sylvester–Gallai-type theorem for quadratic polynomials
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
In this work, we prove a version of the Sylvester–Gallai theorem for quadratic polynomials that takes us one step closer to obtaining a deterministic polynomial time algorithm for testing zeroness of $\Sigma ^{[3]}\Pi \Sigma \Pi ^{[2]}$ circuits. Specifically, we prove that, if a finite set of irreducible quadratic polynomials ${\mathcal {Q}}$ satisfies that for every two polynomials $Q_1,Q_2\in {\mathcal {Q}}$ there is a subset ${\mathcal {K}}\subset {\mathcal {Q}}$ such that $Q_1,Q_2 \notin {\mathcal {K}}$ and whenever $Q_1$ and $Q_2$ vanish, then $\prod _{i\in {\mathcal {K}}} Q_i$ vanishes, then the linear span of the polynomials in ${\mathcal {Q}}$ has dimension $O(1)$. This extends the earlier result [21] that holds for the case $|{\mathcal {K}}| = 1$.
@article{10_1017_fms_2022_100,
author = {Shir Peleg and Amir Shpilka},
title = {A generalized {Sylvester{\textendash}Gallai-type} theorem for quadratic polynomials},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.100},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.100/}
}
TY - JOUR AU - Shir Peleg AU - Amir Shpilka TI - A generalized Sylvester–Gallai-type theorem for quadratic polynomials JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.100/ DO - 10.1017/fms.2022.100 LA - en ID - 10_1017_fms_2022_100 ER -
Shir Peleg; Amir Shpilka. A generalized Sylvester–Gallai-type theorem for quadratic polynomials. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.100
Cité par Sources :