On the nonvanishing of generalised Kato classes for elliptic curves of rank 2
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $E/\mathbf {Q}$ be an elliptic curve and $p>3$ be a good ordinary prime for E and assume that $L(E,1)=0$ with root number $+1$ (so $\text {ord}_{s=1}L(E,s)\geqslant 2$). A construction of Darmon–Rotger attaches to E and an auxiliary weight 1 cuspidal eigenform g such that $L(E,\text {ad}^{0}(g),1)\neq 0$, a Selmer class $\kappa _{p}\in \text {Sel}(\mathbf {Q},V_{p}E)$, and they conjectured the equivalence
In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenform g has complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.
| $ \begin{align*} \kappa_{p}\neq 0\quad\Longleftrightarrow\quad{\textrm{dim}}_{{\mathbf{Q}}_{p}}\textrm{Sel}(\mathbf{Q},V_{p}E)=2. \end{align*} $ |
@article{10_1017_fms_2021_85,
author = {Francesc Castella and Ming-Lun Hsieh},
title = {On the nonvanishing of generalised {Kato} classes for elliptic curves of rank 2},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2021.85},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.85/}
}
TY - JOUR AU - Francesc Castella AU - Ming-Lun Hsieh TI - On the nonvanishing of generalised Kato classes for elliptic curves of rank 2 JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.85/ DO - 10.1017/fms.2021.85 LA - en ID - 10_1017_fms_2021_85 ER -
%0 Journal Article %A Francesc Castella %A Ming-Lun Hsieh %T On the nonvanishing of generalised Kato classes for elliptic curves of rank 2 %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.85/ %R 10.1017/fms.2021.85 %G en %F 10_1017_fms_2021_85
Francesc Castella; Ming-Lun Hsieh. On the nonvanishing of generalised Kato classes for elliptic curves of rank 2. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2021.85
Cité par Sources :