A symplectic look at the Fargues–Fontaine curve
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study a version of the Fukaya category of a symplectic 2-torus with coefficients in a locally constant sheaf of rings. The sheaf of rings includes a globally defined Novikov parameter that plays its usual role in organising polygon counts by area. It also includes a ring of constants whose variation around the the torus can be encoded by a pair of commuting ring automorphisms. When these constants are perfectoid of characteristic p, one of the holonomies is trivial and the other is the $p^{th}$ power map, it is possible in a limited way to specialise the Novikov parameter to 1. We prove that the Dehn twist ring defined there is isomorphic to the homogeneous coordinate ring of a scheme introduced by Fargues and Fontaine: their ‘curve of p-adic Hodge theory’ for the local field $\mathbf {F}_p(\!(z)\!)$.
@article{10_1017_fms_2021_83,
     author = {Yank{\i} Lekili and David Treumann},
     title = {A symplectic look at the {Fargues{\textendash}Fontaine} curve},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2021.83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.83/}
}
TY  - JOUR
AU  - Yankı Lekili
AU  - David Treumann
TI  - A symplectic look at the Fargues–Fontaine curve
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.83/
DO  - 10.1017/fms.2021.83
LA  - en
ID  - 10_1017_fms_2021_83
ER  - 
%0 Journal Article
%A Yankı Lekili
%A David Treumann
%T A symplectic look at the Fargues–Fontaine curve
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.83/
%R 10.1017/fms.2021.83
%G en
%F 10_1017_fms_2021_83
Yankı Lekili; David Treumann. A symplectic look at the Fargues–Fontaine curve. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2021.83

Cité par Sources :