Overgroups of regular unipotent elements in reductive groups
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We study reductive subgroups H of a reductive linear algebraic group G – possibly nonconnected – such that H contains a regular unipotent element of G. We show that under suitable hypotheses, such subgroups are G-irreducible in the sense of Serre. This generalises results of Malle, Testerman and Zalesski. We obtain analogous results for Lie algebras and for finite groups of Lie type. Our proofs are short, conceptual and uniform.
@article{10_1017_fms_2021_82,
author = {Michael Bate and Benjamin Martin and Gerhard R\"ohrle},
title = {Overgroups of regular unipotent elements in reductive groups},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2021.82},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.82/}
}
TY - JOUR AU - Michael Bate AU - Benjamin Martin AU - Gerhard Röhrle TI - Overgroups of regular unipotent elements in reductive groups JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.82/ DO - 10.1017/fms.2021.82 LA - en ID - 10_1017_fms_2021_82 ER -
%0 Journal Article %A Michael Bate %A Benjamin Martin %A Gerhard Röhrle %T Overgroups of regular unipotent elements in reductive groups %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.82/ %R 10.1017/fms.2021.82 %G en %F 10_1017_fms_2021_82
Michael Bate; Benjamin Martin; Gerhard Röhrle. Overgroups of regular unipotent elements in reductive groups. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2021.82
Cité par Sources :