Topological models for stable motivic invariants of regular number rings
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
For an infinity of number rings we express stable motivic invariants in terms of topological data determined by the complex numbers, the real numbers and finite fields. We use this to extend Morel’s identification of the endomorphism ring of the motivic sphere with the Grothendieck–Witt ring of quadratic forms to deeper base schemes.
@article{10_1017_fms_2021_76,
author = {Tom Bachmann and Paul Arne {\O}stv{\ae}r},
title = {Topological models for stable motivic invariants of regular number rings},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2021.76},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.76/}
}
TY - JOUR AU - Tom Bachmann AU - Paul Arne Østvær TI - Topological models for stable motivic invariants of regular number rings JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.76/ DO - 10.1017/fms.2021.76 LA - en ID - 10_1017_fms_2021_76 ER -
Tom Bachmann; Paul Arne Østvær. Topological models for stable motivic invariants of regular number rings. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2021.76
Cité par Sources :