Topological models for stable motivic invariants of regular number rings
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

For an infinity of number rings we express stable motivic invariants in terms of topological data determined by the complex numbers, the real numbers and finite fields. We use this to extend Morel’s identification of the endomorphism ring of the motivic sphere with the Grothendieck–Witt ring of quadratic forms to deeper base schemes.
@article{10_1017_fms_2021_76,
     author = {Tom Bachmann and Paul Arne {\O}stv{\ae}r},
     title = {Topological models for stable motivic invariants of regular number rings},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2021.76},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.76/}
}
TY  - JOUR
AU  - Tom Bachmann
AU  - Paul Arne Østvær
TI  - Topological models for stable motivic invariants of regular number rings
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.76/
DO  - 10.1017/fms.2021.76
LA  - en
ID  - 10_1017_fms_2021_76
ER  - 
%0 Journal Article
%A Tom Bachmann
%A Paul Arne Østvær
%T Topological models for stable motivic invariants of regular number rings
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.76/
%R 10.1017/fms.2021.76
%G en
%F 10_1017_fms_2021_76
Tom Bachmann; Paul Arne Østvær. Topological models for stable motivic invariants of regular number rings. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2021.76

Cité par Sources :