Finiteness properties of the category of mod p representations of ${\textrm {GL}}_2 (\mathbb {Q}_{p})$
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$. We treat all the remaining open cases, which occur when p is $2$ or $3$. Our arguments carry over for all primes p. This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of $\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$ with equal Hodge–Tate weights.
            
            
            
          
        
      @article{10_1017_fms_2021_72,
     author = {Vytautas Pa\v{s}k\={u}nas and Shen-Ning Tung},
     title = {Finiteness properties of the category of mod p representations of ${\textrm {GL}}_2 (\mathbb {Q}_{p})$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.72},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.72/}
}
                      
                      
                    TY  - JOUR
AU  - Vytautas Paškūnas
AU  - Shen-Ning Tung
TI  - Finiteness properties of the category of mod p representations of ${\textrm {GL}}_2 (\mathbb {Q}_{p})$
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.72/
DO  - 10.1017/fms.2021.72
LA  - en
ID  - 10_1017_fms_2021_72
ER  - 
                      
                      
                    %0 Journal Article
%A Vytautas Paškūnas
%A Shen-Ning Tung
%T Finiteness properties of the category of mod p representations of ${\textrm {GL}}_2 (\mathbb {Q}_{p})$
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.72/
%R 10.1017/fms.2021.72
%G en
%F 10_1017_fms_2021_72
                      
                      
                    Vytautas Paškūnas; Shen-Ning Tung. Finiteness properties of the category of mod p representations of ${\textrm {GL}}_2 (\mathbb {Q}_{p})$. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.72
                  
                Cité par Sources :