p-Adic estimates of abelian Artin L-functions on curves
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field $\mathbb {F}_q$ of characteristic $p\geq 3$ and let $V \subset X$ be an affine curve. Consider a nontrivial finite character $\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$. In this article, we prove a lower bound on the Newton polygon of the L-function $L(\rho ,s)$. The estimate depends on monodromy invariants of $\rho $: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
@article{10_1017_fms_2021_71,
     author = {Joe Kramer-Miller},
     title = {p-Adic estimates of abelian {Artin} {L-functions} on curves},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2021.71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.71/}
}
TY  - JOUR
AU  - Joe Kramer-Miller
TI  - p-Adic estimates of abelian Artin L-functions on curves
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.71/
DO  - 10.1017/fms.2021.71
LA  - en
ID  - 10_1017_fms_2021_71
ER  - 
%0 Journal Article
%A Joe Kramer-Miller
%T p-Adic estimates of abelian Artin L-functions on curves
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.71/
%R 10.1017/fms.2021.71
%G en
%F 10_1017_fms_2021_71
Joe Kramer-Miller. p-Adic estimates of abelian Artin L-functions on curves. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2021.71

Cité par Sources :