Spaces of Lorentzian and real stable polynomials are Euclidean balls
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that projective spaces of Lorentzian and real stable polynomials are homeomorphic to Euclidean balls. This solves a conjecture of June Huh and the author. The proof utilises and refines a connection between the symmetric exclusion process in interacting particle systems and the geometry of polynomials.
@article{10_1017_fms_2021_70,
     author = {Petter Br\"and\'en},
     title = {Spaces of {Lorentzian} and real stable polynomials are {Euclidean} balls},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.70},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.70/}
}
TY  - JOUR
AU  - Petter Brändén
TI  - Spaces of Lorentzian and real stable polynomials are Euclidean balls
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.70/
DO  - 10.1017/fms.2021.70
LA  - en
ID  - 10_1017_fms_2021_70
ER  - 
%0 Journal Article
%A Petter Brändén
%T Spaces of Lorentzian and real stable polynomials are Euclidean balls
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.70/
%R 10.1017/fms.2021.70
%G en
%F 10_1017_fms_2021_70
Petter Brändén. Spaces of Lorentzian and real stable polynomials are Euclidean balls. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.70

Cité par Sources :