A homotopy exact sequence for overconvergent isocrystals
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

In this article we prove exactness of the homotopy sequence of overconvergent fundamental groups for a smooth and projective morphism in characteristic p. We do so by first proving a corresponding result for rigid analytic varieties in characteristic $0$, following dos Santos [dS15] in the algebraic case. In characteristic p, we then proceed by a series of reductions to the case of a liftable family of curves, where we can apply the rigid analytic result. We then use this to deduce a Lefschetz hyperplane theorem for convergent fundamental groups, as well as a comparison theorem with the étale fundamental group.
@article{10_1017_fms_2021_63,
     author = {Christopher Lazda and Ambrus P\'al},
     title = {A homotopy exact sequence for overconvergent isocrystals},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.63},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.63/}
}
TY  - JOUR
AU  - Christopher Lazda
AU  - Ambrus Pál
TI  - A homotopy exact sequence for overconvergent isocrystals
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.63/
DO  - 10.1017/fms.2021.63
LA  - en
ID  - 10_1017_fms_2021_63
ER  - 
%0 Journal Article
%A Christopher Lazda
%A Ambrus Pál
%T A homotopy exact sequence for overconvergent isocrystals
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.63/
%R 10.1017/fms.2021.63
%G en
%F 10_1017_fms_2021_63
Christopher Lazda; Ambrus Pál. A homotopy exact sequence for overconvergent isocrystals. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.63

Cité par Sources :