Curves on K3 surfaces in divisibility 2
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.
@article{10_1017_fms_2021_6,
     author = {Younghan Bae and Tim-Henrik Buelles},
     title = {Curves on {K3} surfaces in divisibility 2},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.6/}
}
TY  - JOUR
AU  - Younghan Bae
AU  - Tim-Henrik Buelles
TI  - Curves on K3 surfaces in divisibility 2
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.6/
DO  - 10.1017/fms.2021.6
LA  - en
ID  - 10_1017_fms_2021_6
ER  - 
%0 Journal Article
%A Younghan Bae
%A Tim-Henrik Buelles
%T Curves on K3 surfaces in divisibility 2
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.6/
%R 10.1017/fms.2021.6
%G en
%F 10_1017_fms_2021_6
Younghan Bae; Tim-Henrik Buelles. Curves on K3 surfaces in divisibility 2. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.6

Cité par Sources :