Brauer groups of moduli of hyperelliptic curves via cohomological invariants
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$. In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.
            
            
            
          
        
      @article{10_1017_fms_2021_55,
     author = {Andrea Di Lorenzo and Roberto Pirisi},
     title = {Brauer groups of moduli of hyperelliptic curves via cohomological invariants},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.55},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.55/}
}
                      
                      
                    TY - JOUR AU - Andrea Di Lorenzo AU - Roberto Pirisi TI - Brauer groups of moduli of hyperelliptic curves via cohomological invariants JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.55/ DO - 10.1017/fms.2021.55 LA - en ID - 10_1017_fms_2021_55 ER -
%0 Journal Article %A Andrea Di Lorenzo %A Roberto Pirisi %T Brauer groups of moduli of hyperelliptic curves via cohomological invariants %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.55/ %R 10.1017/fms.2021.55 %G en %F 10_1017_fms_2021_55
Andrea Di Lorenzo; Roberto Pirisi. Brauer groups of moduli of hyperelliptic curves via cohomological invariants. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.55
Cité par Sources :