Hilbert’s 17th problem in free skew fields
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper solves the rational noncommutative analogue of Hilbert’s 17th problem: if a noncommutative rational function is positive semidefinite on all tuples of Hermitian matrices in its domain, then it is a sum of Hermitian squares of noncommutative rational functions. This result is a generalisation and culmination of earlier positivity certificates for noncommutative polynomials or rational functions without Hermitian singularities. More generally, a rational Positivstellensatz for free spectrahedra is given: a noncommutative rational function is positive semidefinite or undefined at every matricial solution of a linear matrix inequality $L\succeq 0$ if and only if it belongs to the rational quadratic module generated by L. The essential intermediate step toward this Positivstellensatz for functions with singularities is an extension theorem for invertible evaluations of linear matrix pencils.
@article{10_1017_fms_2021_54,
     author = {Jurij Vol\v{c}i\v{c}},
     title = {Hilbert{\textquoteright}s 17th problem in free skew fields},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.54/}
}
TY  - JOUR
AU  - Jurij Volčič
TI  - Hilbert’s 17th problem in free skew fields
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.54/
DO  - 10.1017/fms.2021.54
LA  - en
ID  - 10_1017_fms_2021_54
ER  - 
%0 Journal Article
%A Jurij Volčič
%T Hilbert’s 17th problem in free skew fields
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.54/
%R 10.1017/fms.2021.54
%G en
%F 10_1017_fms_2021_54
Jurij Volčič. Hilbert’s 17th problem in free skew fields. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.54

Cité par Sources :