Geometric vertex decomposition and liaison
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

Geometric vertex decomposition and liaison are two frameworks that have been used to produce similar results about similar families of algebraic varieties. In this paper, we establish an explicit connection between these approaches. In particular, we show that each geometrically vertex decomposable ideal is linked by a sequence of elementary G-biliaisons of height $1$ to an ideal of indeterminates and, conversely, that every G-biliaison of a certain type gives rise to a geometric vertex decomposition. As a consequence, we can immediately conclude that several well-known families of ideals are glicci, including Schubert determinantal ideals, defining ideals of varieties of complexes and defining ideals of graded lower bound cluster algebras.
@article{10_1017_fms_2021_53,
     author = {Patricia Klein and Jenna Rajchgot},
     title = {Geometric vertex decomposition and liaison},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.53},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.53/}
}
TY  - JOUR
AU  - Patricia Klein
AU  - Jenna Rajchgot
TI  - Geometric vertex decomposition and liaison
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.53/
DO  - 10.1017/fms.2021.53
LA  - en
ID  - 10_1017_fms_2021_53
ER  - 
%0 Journal Article
%A Patricia Klein
%A Jenna Rajchgot
%T Geometric vertex decomposition and liaison
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.53/
%R 10.1017/fms.2021.53
%G en
%F 10_1017_fms_2021_53
Patricia Klein; Jenna Rajchgot. Geometric vertex decomposition and liaison. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.53

Cité par Sources :