Zarankiewicz’s problem for semilinear hypergraphs
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              A bipartite graph $H = \left (V_1, V_2; E \right )$ with $\lvert V_1\rvert + \lvert V_2\rvert = n$ is semilinear if $V_i \subseteq \mathbb {R}^{d_i}$ for some $d_i$ and the edge relation E consists of the pairs of points $(x_1, x_2) \in V_1 \times V_2$ satisfying a fixed Boolean combination of s linear equalities and inequalities in $d_1 + d_2$ variables for some s. We show that for a fixed k, the number of edges in a $K_{k,k}$-free semilinear H is almost linear in n, namely $\lvert E\rvert = O_{s,k,\varepsilon }\left (n^{1+\varepsilon }\right )$ for any $\varepsilon> 0$; and more generally, $\lvert E\rvert = O_{s,k,r,\varepsilon }\left (n^{r-1 + \varepsilon }\right )$ for a $K_{k, \dotsc ,k}$-free semilinear r-partite r-uniform hypergraph. As an application, we obtain the following incidence bound: given $n_1$ points and $n_2$ open boxes with axis-parallel sides in $\mathbb {R}^d$ such that their incidence graph is $K_{k,k}$-free, there can be at most $O_{k,\varepsilon }\left (n^{1+\varepsilon }\right )$ incidences. The same bound holds if instead of boxes, one takes polytopes cut out by the translates of an arbitrary fixed finite set of half-spaces.We also obtain matching upper and (superlinear) lower bounds in the case of dyadic boxes on the plane, and point out some connections to the model-theoretic trichotomy in o-minimal structures (showing that the failure of an almost-linear bound for some definable graph allows one to recover the field operations from that graph in a definable manner).
            
            
            
          
        
      @article{10_1017_fms_2021_52,
     author = {Abdul Basit and Artem Chernikov and Sergei Starchenko and Terence Tao and Chieu-Minh Tran},
     title = {Zarankiewicz{\textquoteright}s problem for semilinear hypergraphs},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.52/}
}
                      
                      
                    TY - JOUR AU - Abdul Basit AU - Artem Chernikov AU - Sergei Starchenko AU - Terence Tao AU - Chieu-Minh Tran TI - Zarankiewicz’s problem for semilinear hypergraphs JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.52/ DO - 10.1017/fms.2021.52 LA - en ID - 10_1017_fms_2021_52 ER -
%0 Journal Article %A Abdul Basit %A Artem Chernikov %A Sergei Starchenko %A Terence Tao %A Chieu-Minh Tran %T Zarankiewicz’s problem for semilinear hypergraphs %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.52/ %R 10.1017/fms.2021.52 %G en %F 10_1017_fms_2021_52
Abdul Basit; Artem Chernikov; Sergei Starchenko; Terence Tao; Chieu-Minh Tran. Zarankiewicz’s problem for semilinear hypergraphs. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.52
Cité par Sources :