Non-existence of bi-infinite geodesics in the exponential corner growth model – Corrigendum
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              An abstract is not available for this content. As you have access to this content, full HTML content is provided on this page. A PDF of this content is also available in through the ‘Save PDF’ action button.
            
            
            
          
        
      @article{10_1017_fms_2021_51,
     author = {M\'arton Bal\'azs and Ofer Busani and Timo Sepp\"al\"ainen},
     title = {Non-existence of bi-infinite geodesics in the exponential corner growth model {\textendash} {Corrigendum}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.51},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.51/}
}
                      
                      
                    TY - JOUR AU - Márton Balázs AU - Ofer Busani AU - Timo Seppäläinen TI - Non-existence of bi-infinite geodesics in the exponential corner growth model – Corrigendum JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.51/ DO - 10.1017/fms.2021.51 LA - en ID - 10_1017_fms_2021_51 ER -
%0 Journal Article %A Márton Balázs %A Ofer Busani %A Timo Seppäläinen %T Non-existence of bi-infinite geodesics in the exponential corner growth model – Corrigendum %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.51/ %R 10.1017/fms.2021.51 %G en %F 10_1017_fms_2021_51
Márton Balázs; Ofer Busani; Timo Seppäläinen. Non-existence of bi-infinite geodesics in the exponential corner growth model – Corrigendum. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.51
Cité par Sources :