All finite sets are Ramsey in the maximum norm
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              For two metric spaces $\mathbb X$ and $\mathcal Y$ the chromatic number $\chi ({{\mathbb X}};{{\mathcal{Y}}})$ of $\mathbb X$ with forbidden $\mathcal Y$ is the smallest k such that there is a colouring of the points of $\mathbb X$ with k colors that contains no monochromatic copy of $\mathcal Y$. In this article, we show that for each finite metric space $\mathcal {M}$ that contains at least two points the value $\chi \left ({{\mathbb R}}^n_\infty; \mathcal M \right )$ grows exponentially with n. We also provide explicit lower and upper bounds for some special $\mathcal M$.
            
            
            
          
        
      @article{10_1017_fms_2021_50,
     author = {Andrey Kupavskii and Arsenii Sagdeev},
     title = {All finite sets are {Ramsey} in the maximum norm},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.50/}
}
                      
                      
                    Andrey Kupavskii; Arsenii Sagdeev. All finite sets are Ramsey in the maximum norm. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.50
Cité par Sources :