All finite sets are Ramsey in the maximum norm
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

For two metric spaces $\mathbb X$ and $\mathcal Y$ the chromatic number $\chi ({{\mathbb X}};{{\mathcal{Y}}})$ of $\mathbb X$ with forbidden $\mathcal Y$ is the smallest k such that there is a colouring of the points of $\mathbb X$ with k colors that contains no monochromatic copy of $\mathcal Y$. In this article, we show that for each finite metric space $\mathcal {M}$ that contains at least two points the value $\chi \left ({{\mathbb R}}^n_\infty; \mathcal M \right )$ grows exponentially with n. We also provide explicit lower and upper bounds for some special $\mathcal M$.
@article{10_1017_fms_2021_50,
     author = {Andrey Kupavskii and Arsenii Sagdeev},
     title = {All finite sets are {Ramsey} in the maximum norm},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.50/}
}
TY  - JOUR
AU  - Andrey Kupavskii
AU  - Arsenii Sagdeev
TI  - All finite sets are Ramsey in the maximum norm
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.50/
DO  - 10.1017/fms.2021.50
LA  - en
ID  - 10_1017_fms_2021_50
ER  - 
%0 Journal Article
%A Andrey Kupavskii
%A Arsenii Sagdeev
%T All finite sets are Ramsey in the maximum norm
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.50/
%R 10.1017/fms.2021.50
%G en
%F 10_1017_fms_2021_50
Andrey Kupavskii; Arsenii Sagdeev. All finite sets are Ramsey in the maximum norm. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.50

Cité par Sources :