Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$-linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$, where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$. The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.
            
            
            
          
        
      @article{10_1017_fms_2021_45,
     author = {Takafumi Kouno and Satoshi Naito and Daniel Orr and Daisuke Sagaki},
     title = {Inverse {K-Chevalley} formulas for semi-infinite flag manifolds, {I:} minuscule weights in {ADE} type},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.45},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.45/}
}
                      
                      
                    TY - JOUR AU - Takafumi Kouno AU - Satoshi Naito AU - Daniel Orr AU - Daisuke Sagaki TI - Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.45/ DO - 10.1017/fms.2021.45 LA - en ID - 10_1017_fms_2021_45 ER -
%0 Journal Article %A Takafumi Kouno %A Satoshi Naito %A Daniel Orr %A Daisuke Sagaki %T Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.45/ %R 10.1017/fms.2021.45 %G en %F 10_1017_fms_2021_45
Takafumi Kouno; Satoshi Naito; Daniel Orr; Daisuke Sagaki. Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.45
Cité par Sources :