Fano-type surfaces with large cyclic automorphisms
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We give a characterisation of Fano-type surfaces with large cyclic automorphisms. As an application, we give a characterisation of Kawamata log terminal $3$-fold singularities with large class groups of rank at least $2$.
@article{10_1017_fms_2021_44,
     author = {Joaqu{\'\i}n Moraga},
     title = {Fano-type surfaces with large cyclic automorphisms},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.44/}
}
TY  - JOUR
AU  - Joaquín Moraga
TI  - Fano-type surfaces with large cyclic automorphisms
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.44/
DO  - 10.1017/fms.2021.44
LA  - en
ID  - 10_1017_fms_2021_44
ER  - 
%0 Journal Article
%A Joaquín Moraga
%T Fano-type surfaces with large cyclic automorphisms
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.44/
%R 10.1017/fms.2021.44
%G en
%F 10_1017_fms_2021_44
Joaquín Moraga. Fano-type surfaces with large cyclic automorphisms. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.44

Cité par Sources :