Higher rank K-theoretic Donaldson-Thomas Theory of points
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$, in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$-fold ${{\mathbb {A}}}^3$. We compute the associated partition function as a plethystic exponential, proving a conjecture proposed in string theory by Awata-Kanno and Benini-Bonelli-Poggi-Tanzini. A crucial step in the proof is the fact, nontrival if $r>1$, that the invariants do not depend on the equivariant parameters of the framing torus $({{\mathbb {C}}}^\ast )^r$. Reducing from K-theoretic to cohomological invariants, we compute the corresponding DT invariants, proving a conjecture of Szabo. Reducing further to enumerative DT invariants, we solve the higher rank DT theory of a pair $(X,F)$, where F is an equivariant exceptional locally free sheaf on a projective toric $3$-fold X.As a further refinement of the K-theoretic DT invariants, we formulate a mathematical definition of the chiral elliptic genus studied in physics. This allows us to define elliptic DT invariants of ${{\mathbb {A}}}^3$ in arbitrary rank, which we use to tackle a conjecture of Benini-Bonelli-Poggi-Tanzini.
            
            
            
          
        
      @article{10_1017_fms_2021_4,
     author = {Nadir Fasola and Sergej Monavari and Andrea T. Ricolfi},
     title = {Higher rank {K-theoretic} {Donaldson-Thomas} {Theory} of points},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.4/}
}
                      
                      
                    TY - JOUR AU - Nadir Fasola AU - Sergej Monavari AU - Andrea T. Ricolfi TI - Higher rank K-theoretic Donaldson-Thomas Theory of points JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.4/ DO - 10.1017/fms.2021.4 LA - en ID - 10_1017_fms_2021_4 ER -
Nadir Fasola; Sergej Monavari; Andrea T. Ricolfi. Higher rank K-theoretic Donaldson-Thomas Theory of points. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.4
Cité par Sources :