Equipartition principle for Wigner matrices
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.
            
            
            
          
        
      @article{10_1017_fms_2021_38,
     author = {Zhigang Bao and L\'aszl\'o Erd\H{o}s and Kevin Schnelli},
     title = {Equipartition principle for {Wigner} matrices},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.38/}
}
                      
                      
                    TY - JOUR AU - Zhigang Bao AU - László Erdős AU - Kevin Schnelli TI - Equipartition principle for Wigner matrices JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.38/ DO - 10.1017/fms.2021.38 LA - en ID - 10_1017_fms_2021_38 ER -
Zhigang Bao; László Erdős; Kevin Schnelli. Equipartition principle for Wigner matrices. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.38
Cité par Sources :