Equipartition principle for Wigner matrices
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.
@article{10_1017_fms_2021_38,
     author = {Zhigang Bao and L\'aszl\'o Erd\H{o}s and Kevin Schnelli},
     title = {Equipartition principle for {Wigner} matrices},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.38},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.38/}
}
TY  - JOUR
AU  - Zhigang Bao
AU  - László Erdős
AU  - Kevin Schnelli
TI  - Equipartition principle for Wigner matrices
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.38/
DO  - 10.1017/fms.2021.38
LA  - en
ID  - 10_1017_fms_2021_38
ER  - 
%0 Journal Article
%A Zhigang Bao
%A László Erdős
%A Kevin Schnelli
%T Equipartition principle for Wigner matrices
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.38/
%R 10.1017/fms.2021.38
%G en
%F 10_1017_fms_2021_38
Zhigang Bao; László Erdős; Kevin Schnelli. Equipartition principle for Wigner matrices. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.38

Cité par Sources :