Unicorn paths and hyperfiniteness for the mapping class group
Forum of Mathematics, Sigma, Tome 9 (2021)
Voir la notice de l'article provenant de la source Cambridge University Press
Let S be an orientable surface of finite type. Using Pho-on’s infinite unicorn paths, we prove the hyperfiniteness of orbit equivalence relations induced by the actions of the mapping class group of S on the Gromov boundaries of the arc graph and the curve graph of S. In the curve graph case, this strengthens the results of Hamenstädt and Kida that this action is universally amenable and that the mapping class group of S is exact.
@article{10_1017_fms_2021_34,
author = {Piotr Przytycki and Marcin Sabok},
title = {Unicorn paths and hyperfiniteness for the mapping class group},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {9},
year = {2021},
doi = {10.1017/fms.2021.34},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.34/}
}
TY - JOUR AU - Piotr Przytycki AU - Marcin Sabok TI - Unicorn paths and hyperfiniteness for the mapping class group JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.34/ DO - 10.1017/fms.2021.34 LA - en ID - 10_1017_fms_2021_34 ER -
Piotr Przytycki; Marcin Sabok. Unicorn paths and hyperfiniteness for the mapping class group. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.34
Cité par Sources :