P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally unipotent degeneration of compact hyper-Kähler manifolds.
            
            
            
          
        
      @article{10_1017_fms_2021_31,
     author = {Andrew Harder and Zhiyuan Li and Junliang Shen and Qizheng Yin},
     title = {P = {W} for {Lagrangian} fibrations and degenerations of {hyper-K\"ahler} manifolds},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.31/}
}
                      
                      
                    TY - JOUR AU - Andrew Harder AU - Zhiyuan Li AU - Junliang Shen AU - Qizheng Yin TI - P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.31/ DO - 10.1017/fms.2021.31 LA - en ID - 10_1017_fms_2021_31 ER -
%0 Journal Article %A Andrew Harder %A Zhiyuan Li %A Junliang Shen %A Qizheng Yin %T P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.31/ %R 10.1017/fms.2021.31 %G en %F 10_1017_fms_2021_31
Andrew Harder; Zhiyuan Li; Junliang Shen; Qizheng Yin. P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.31
Cité par Sources :