P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally unipotent degeneration of compact hyper-Kähler manifolds.
@article{10_1017_fms_2021_31,
     author = {Andrew Harder and Zhiyuan Li and Junliang Shen and Qizheng Yin},
     title = {P = {W} for {Lagrangian} fibrations and degenerations of {hyper-K\"ahler} manifolds},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.31/}
}
TY  - JOUR
AU  - Andrew Harder
AU  - Zhiyuan Li
AU  - Junliang Shen
AU  - Qizheng Yin
TI  - P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.31/
DO  - 10.1017/fms.2021.31
LA  - en
ID  - 10_1017_fms_2021_31
ER  - 
%0 Journal Article
%A Andrew Harder
%A Zhiyuan Li
%A Junliang Shen
%A Qizheng Yin
%T P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.31/
%R 10.1017/fms.2021.31
%G en
%F 10_1017_fms_2021_31
Andrew Harder; Zhiyuan Li; Junliang Shen; Qizheng Yin. P = W for Lagrangian fibrations and degenerations of hyper-Kähler manifolds. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.31

Cité par Sources :