A structure theorem for stochastic processes indexed by the discrete hypercube
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

Let A be a finite set with , let n be a positive integer, and let $A^n$ denote the discrete $n\text {-dimensional}$ hypercube (that is, $A^n$ is the Cartesian product of n many copies of A). Given a family $\langle D_t:t\in A^n\rangle $ of measurable events in a probability space (a stochastic process), what structural information can be obtained assuming that the events $\langle D_t:t\in A^n\rangle $ are not behaving as if they were independent? We obtain an answer to this problem (in a strong quantitative sense) subject to a mild ‘stationarity’ condition. Our result has a number of combinatorial consequences, including a new (and the most informative so far) proof of the density Hales-Jewett theorem.
@article{10_1017_fms_2021_3,
     author = {Pandelis Dodos and Konstantinos Tyros},
     title = {A structure theorem for stochastic processes indexed by the discrete hypercube},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.3/}
}
TY  - JOUR
AU  - Pandelis Dodos
AU  - Konstantinos Tyros
TI  - A structure theorem for stochastic processes indexed by the discrete hypercube
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.3/
DO  - 10.1017/fms.2021.3
LA  - en
ID  - 10_1017_fms_2021_3
ER  - 
%0 Journal Article
%A Pandelis Dodos
%A Konstantinos Tyros
%T A structure theorem for stochastic processes indexed by the discrete hypercube
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.3/
%R 10.1017/fms.2021.3
%G en
%F 10_1017_fms_2021_3
Pandelis Dodos; Konstantinos Tyros. A structure theorem for stochastic processes indexed by the discrete hypercube. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.3

Cité par Sources :