A structure theorem for stochastic processes indexed by the discrete hypercube
Forum of Mathematics, Sigma, Tome 9 (2021)
Voir la notice de l'article provenant de la source Cambridge University Press
Let A be a finite set with , let n be a positive integer, and let $A^n$ denote the discrete $n\text {-dimensional}$ hypercube (that is, $A^n$ is the Cartesian product of n many copies of A). Given a family $\langle D_t:t\in A^n\rangle $ of measurable events in a probability space (a stochastic process), what structural information can be obtained assuming that the events $\langle D_t:t\in A^n\rangle $ are not behaving as if they were independent? We obtain an answer to this problem (in a strong quantitative sense) subject to a mild ‘stationarity’ condition. Our result has a number of combinatorial consequences, including a new (and the most informative so far) proof of the density Hales-Jewett theorem.
@article{10_1017_fms_2021_3,
author = {Pandelis Dodos and Konstantinos Tyros},
title = {A structure theorem for stochastic processes indexed by the discrete hypercube},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {9},
year = {2021},
doi = {10.1017/fms.2021.3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.3/}
}
TY - JOUR AU - Pandelis Dodos AU - Konstantinos Tyros TI - A structure theorem for stochastic processes indexed by the discrete hypercube JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.3/ DO - 10.1017/fms.2021.3 LA - en ID - 10_1017_fms_2021_3 ER -
%0 Journal Article %A Pandelis Dodos %A Konstantinos Tyros %T A structure theorem for stochastic processes indexed by the discrete hypercube %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.3/ %R 10.1017/fms.2021.3 %G en %F 10_1017_fms_2021_3
Pandelis Dodos; Konstantinos Tyros. A structure theorem for stochastic processes indexed by the discrete hypercube. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.3
Cité par Sources :