The effective Shafarevich conjecture for abelian varieties of ${\text {GL}_{2}}$-type
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

In this article we establish the effective Shafarevich conjecture for abelian varieties over ${\mathbb Q}$ of ${\text {GL}_2}$-type. The proof combines Faltings’ method with Serre’s modularity conjecture, isogeny estimates and results from Arakelov theory. Our result opens the way for the effective study of integral points on certain higher dimensional moduli schemes such as, for example, Hilbert modular varieties.
@article{10_1017_fms_2021_29,
     author = {Rafael von K\"anel},
     title = {The effective {Shafarevich} conjecture for abelian varieties of ${\text {GL}_{2}}$-type},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.29/}
}
TY  - JOUR
AU  - Rafael von Känel
TI  - The effective Shafarevich conjecture for abelian varieties of ${\text {GL}_{2}}$-type
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.29/
DO  - 10.1017/fms.2021.29
LA  - en
ID  - 10_1017_fms_2021_29
ER  - 
%0 Journal Article
%A Rafael von Känel
%T The effective Shafarevich conjecture for abelian varieties of ${\text {GL}_{2}}$-type
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.29/
%R 10.1017/fms.2021.29
%G en
%F 10_1017_fms_2021_29
Rafael von Känel. The effective Shafarevich conjecture for abelian varieties of ${\text {GL}_{2}}$-type. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.29

Cité par Sources :