Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of $\overline {\mathcal {M}}_{g,n}$
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that $\overline {\mathcal {M}}_{12,6}$, $\overline {\mathcal {M}}_{12,7}$, $\overline {\mathcal {M}}_{13,4}$ and $\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $\overline {\mathcal {M}}_{12,8}$ and $\overline {\mathcal {M}}_{16}$. We also show that the moduli space of $(4g+5)$-pointed hyperelliptic curves $\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.
@article{10_1017_fms_2021_28,
     author = {Daniele Agostini and Ignacio Barros},
     title = {Pencils on {Surfaces} with {Normal} {Crossings} and the {Kodaira} {Dimension} of $\overline {\mathcal {M}}_{g,n}$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.28},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.28/}
}
TY  - JOUR
AU  - Daniele Agostini
AU  - Ignacio Barros
TI  - Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of $\overline {\mathcal {M}}_{g,n}$
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.28/
DO  - 10.1017/fms.2021.28
LA  - en
ID  - 10_1017_fms_2021_28
ER  - 
%0 Journal Article
%A Daniele Agostini
%A Ignacio Barros
%T Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of $\overline {\mathcal {M}}_{g,n}$
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.28/
%R 10.1017/fms.2021.28
%G en
%F 10_1017_fms_2021_28
Daniele Agostini; Ignacio Barros. Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of $\overline {\mathcal {M}}_{g,n}$. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.28

Cité par Sources :