Hodge decomposition of string topology
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 9 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$-equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $, making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].
            
            
            
          
        
      @article{10_1017_fms_2021_26,
     author = {Yuri Berest and Ajay C. Ramadoss and Yining Zhang},
     title = {Hodge decomposition of string topology},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.26/}
}
                      
                      
                    Yuri Berest; Ajay C. Ramadoss; Yining Zhang. Hodge decomposition of string topology. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.26
Cité par Sources :