The symplectic geometry of higher Auslander algebras: Symmetric products of disks
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that the perfect derived categories of Iyama’s d-dimensional Auslander algebras of type ${\mathbb {A}}$ are equivalent to the partially wrapped Fukaya categories of the d-fold symmetric product of the $2$-dimensional unit disk with finitely many stops on its boundary. Furthermore, we observe that Koszul duality provides an equivalence between the partially wrapped Fukaya categories associated to the d-fold symmetric product of the disk and those of its $(n-d)$-fold symmetric product; this observation leads to a symplectic proof of a theorem of Beckert concerning the derived Morita equivalence between the corresponding higher Auslander algebras of type ${\mathbb {A}}$. As a by-product of our results, we deduce that the partially wrapped Fukaya categories associated to the d-fold symmetric product of the disk organise into a paracyclic object equivalent to the d-dimensional Waldhausen $\text {S}_{\bullet }$-construction, a simplicial space whose geometric realisation provides the d-fold delooping of the connective algebraic K-theory space of the ring of coefficients.
@article{10_1017_fms_2021_2,
     author = {Tobias Dyckerhoff and Gustavo Jasso and Yank\ensuremath{\iota} Lekili},
     title = {The symplectic geometry of higher {Auslander} algebras: {Symmetric} products of disks},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.2/}
}
TY  - JOUR
AU  - Tobias Dyckerhoff
AU  - Gustavo Jasso
AU  - Yankι Lekili
TI  - The symplectic geometry of higher Auslander algebras: Symmetric products of disks
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.2/
DO  - 10.1017/fms.2021.2
LA  - en
ID  - 10_1017_fms_2021_2
ER  - 
%0 Journal Article
%A Tobias Dyckerhoff
%A Gustavo Jasso
%A Yankι Lekili
%T The symplectic geometry of higher Auslander algebras: Symmetric products of disks
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.2/
%R 10.1017/fms.2021.2
%G en
%F 10_1017_fms_2021_2
Tobias Dyckerhoff; Gustavo Jasso; Yankι Lekili. The symplectic geometry of higher Auslander algebras: Symmetric products of disks. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.2

Cité par Sources :