Transformations of the transfinite plane
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the existence of transformations of the transfinite plane that allow one to reduce Ramsey-theoretic statements concerning uncountable Abelian groups into classical partition relations for uncountable cardinals.To exemplify: we prove that for every inaccessible cardinal $\kappa $, if $\kappa $ admits a stationary set that does not reflect at inaccessibles, then the classical negative partition relation $\kappa \nrightarrow [\kappa ]^2_\kappa $ implies that for every Abelian group $(G,+)$ of size $\kappa $, there exists a map $f:G\rightarrow G$ such that for every $X\subseteq G$ of size $\kappa $ and every $g\in G$, there exist $x\neq y$ in X such that $f(x+y)=g$.
@article{10_1017_fms_2021_14,
     author = {Assaf Rinot and Jing Zhang},
     title = {Transformations of the transfinite plane},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.14/}
}
TY  - JOUR
AU  - Assaf Rinot
AU  - Jing Zhang
TI  - Transformations of the transfinite plane
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.14/
DO  - 10.1017/fms.2021.14
LA  - en
ID  - 10_1017_fms_2021_14
ER  - 
%0 Journal Article
%A Assaf Rinot
%A Jing Zhang
%T Transformations of the transfinite plane
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.14/
%R 10.1017/fms.2021.14
%G en
%F 10_1017_fms_2021_14
Assaf Rinot; Jing Zhang. Transformations of the transfinite plane. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.14

Cité par Sources :