Global boundedness of a class of multilinear Fourier integral operators
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We establish the global regularity of multilinear Fourier integral operators that are associated to nonlinear wave equations on products of $L^p$ spaces by proving endpoint boundedness on suitable product spaces containing combinations of the local Hardy space, the local BMO and the $L^2$ spaces.
@article{10_1017_fms_2021_13,
     author = {Salvador Rodr{\'\i}guez-L\'opez and David Rule and Wolfgang Staubach},
     title = {Global boundedness of a class of multilinear {Fourier} integral operators},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.13/}
}
TY  - JOUR
AU  - Salvador Rodríguez-López
AU  - David Rule
AU  - Wolfgang Staubach
TI  - Global boundedness of a class of multilinear Fourier integral operators
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.13/
DO  - 10.1017/fms.2021.13
LA  - en
ID  - 10_1017_fms_2021_13
ER  - 
%0 Journal Article
%A Salvador Rodríguez-López
%A David Rule
%A Wolfgang Staubach
%T Global boundedness of a class of multilinear Fourier integral operators
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.13/
%R 10.1017/fms.2021.13
%G en
%F 10_1017_fms_2021_13
Salvador Rodríguez-López; David Rule; Wolfgang Staubach. Global boundedness of a class of multilinear Fourier integral operators. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.13

Cité par Sources :