Global boundedness of a class of multilinear Fourier integral operators
Forum of Mathematics, Sigma, Tome 9 (2021)
Voir la notice de l'article provenant de la source Cambridge University Press
We establish the global regularity of multilinear Fourier integral operators that are associated to nonlinear wave equations on products of $L^p$ spaces by proving endpoint boundedness on suitable product spaces containing combinations of the local Hardy space, the local BMO and the $L^2$ spaces.
@article{10_1017_fms_2021_13,
author = {Salvador Rodr{\'\i}guez-L\'opez and David Rule and Wolfgang Staubach},
title = {Global boundedness of a class of multilinear {Fourier} integral operators},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {9},
year = {2021},
doi = {10.1017/fms.2021.13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.13/}
}
TY - JOUR AU - Salvador Rodríguez-López AU - David Rule AU - Wolfgang Staubach TI - Global boundedness of a class of multilinear Fourier integral operators JO - Forum of Mathematics, Sigma PY - 2021 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.13/ DO - 10.1017/fms.2021.13 LA - en ID - 10_1017_fms_2021_13 ER -
%0 Journal Article %A Salvador Rodríguez-López %A David Rule %A Wolfgang Staubach %T Global boundedness of a class of multilinear Fourier integral operators %J Forum of Mathematics, Sigma %D 2021 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.13/ %R 10.1017/fms.2021.13 %G en %F 10_1017_fms_2021_13
Salvador Rodríguez-López; David Rule; Wolfgang Staubach. Global boundedness of a class of multilinear Fourier integral operators. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.13
Cité par Sources :