Continuous Maps from Spheres Converging to Boundaries of Convex Hulls
Forum of Mathematics, Sigma, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

Given n distinct points$\mathbf {x}_1, \ldots , \mathbf {x}_n$ in$\mathbb {R}^d$, let K denote their convex hull, which we assume to be d-dimensional, and$B = \partial K $ its$(d-1)$-dimensional boundary. We construct an explicit, easily computable one-parameter family of continuous maps$\mathbf {f}_{\varepsilon } \colon \mathbb {S}^{d-1} \to K$ which, for$\varepsilon> 0$, are defined on the$(d-1)$-dimensional sphere, and whose images$\mathbf {f}_{\varepsilon }({\mathbb {S}^{d-1}})$ are codimension$1$ submanifolds contained in the interior of K. Moreover, as the parameter$\varepsilon $ goes to$0^+$, the images$\mathbf {f}_{\varepsilon } ({\mathbb {S}^{d-1}})$ converge, as sets, to the boundary B of the convex hull. We prove this theorem using techniques from convex geometry of (spherical) polytopes and set-valued homology. We further establish an interesting relationship with the Gauss map of the polytope B, appropriately defined. Several computer plots illustrating these results are included.
@article{10_1017_fms_2021_10,
     author = {Joseph Malkoun and Peter J. Olver},
     title = {Continuous {Maps} from {Spheres} {Converging} to {Boundaries} of {Convex} {Hulls}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fms.2021.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.10/}
}
TY  - JOUR
AU  - Joseph Malkoun
AU  - Peter J. Olver
TI  - Continuous Maps from Spheres Converging to Boundaries of Convex Hulls
JO  - Forum of Mathematics, Sigma
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.10/
DO  - 10.1017/fms.2021.10
LA  - en
ID  - 10_1017_fms_2021_10
ER  - 
%0 Journal Article
%A Joseph Malkoun
%A Peter J. Olver
%T Continuous Maps from Spheres Converging to Boundaries of Convex Hulls
%J Forum of Mathematics, Sigma
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2021.10/
%R 10.1017/fms.2021.10
%G en
%F 10_1017_fms_2021_10
Joseph Malkoun; Peter J. Olver. Continuous Maps from Spheres Converging to Boundaries of Convex Hulls. Forum of Mathematics, Sigma, Tome 9 (2021). doi: 10.1017/fms.2021.10

Cité par Sources :